不僅專業(yè)課需要知識框架,數(shù)學也是如此。一個優(yōu)秀而全面的知識框架有助于厘清整體的解題思路。下面分享一位師兄精心整理的線代知識點框架。
線性代數(shù)知識點框架(一)
線性代數(shù)的學習切入點:線性方程組。換言之,可以把線性代數(shù)看作是在研究線性方程組這一對象的過程中建立起來的學科。
線性方程組的特點:方程是未知數(shù)的一次齊次式,方程組的數(shù)目s和未知數(shù)的個數(shù)n可以相同,也可以不同。
關(guān)于線性方程組的解,有三個問題值得討論:(1)、方程組是否有解,即解的存在性問題;(2)、方程組如何求解,有多少個解;(3)、方程組有不止一個解時,這些不同的解之間有無內(nèi)在聯(lián)系,即解的結(jié)構(gòu)問題。
高斯消元法,最基礎(chǔ)和最直接的求解線性方程組的方法,其中涉及到三種對方程的同解變換:(1)、把某個方程的k倍加到另外一個方程上去;(2)、交換某兩個方程的位置;(3)、用某個常數(shù)k乘以某個方程。我們把這三種變換統(tǒng)稱為線性方程組的初等變換。
任意的線性方程組都可以通過初等變換化為階梯形方程組。
由具體例子可看出,化為階梯形方程組后,就可以依次解出每個未知數(shù)的值,從而求得方程組的解。
對方程組的解起決定性作用的是未知數(shù)的系數(shù)及其相對位置,所以可以把方程組的所有系數(shù)及常數(shù)項按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個數(shù)按某種方式構(gòu)成的表稱為矩陣。
可以用矩陣的形式來表示一個線性方程組,這至少在書寫和表達上都更加簡潔。
系數(shù)矩陣和增廣矩陣。
高斯消元法中對線性方程組的初等變換,就對應(yīng)的是矩陣的初等行變換。階梯形方程組,對應(yīng)的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對其增廣矩陣做初等行變換化為階梯形矩陣,求得解。
階梯形矩陣的特點:左下方的元素全為零,每一行的第一個不為零的元素稱為該行的主元。
對不同的線性方程組的具體求解結(jié)果進行歸納總結(jié)(有唯一解、無解、有無窮多解),再經(jīng)過嚴格證明,可得到關(guān)于線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現(xiàn)0=d這一項,則方程組無解,若未出現(xiàn)0=d一項,則方程組有解;在方程組有解的情況下,若階梯形的非零行數(shù)目r等于未知量數(shù)目n,方程組有唯一解,若r
在利用初等變換得到階梯型后,還可進一步得到最簡形,使用最簡形,最簡形的特點是主元上方的元素也全為零,這對于求解未知量的值更加方便,但代價是之前需要經(jīng)過更多的初等變換。在求解過程中,選擇階梯形還是最簡形,取決于個人習慣。
常數(shù)項全為零的線性方程稱為齊次方程組,齊次方程組必有零解。
齊次方程組的方程組個數(shù)若小于未知量個數(shù),則方程組一定有非零解。
利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題(1)解的存在性問題和(2)如何求解的問題,這是以線性方程組為出發(fā)點建立起來的最基本理論。
對于n個方程n個未知數(shù)的特殊情形,我們發(fā)現(xiàn)可以利用系數(shù)的某種組合來表示其解,這種按特定規(guī)則表示的系數(shù)組合稱為一個線性方程組(或矩陣)的行列式。行列式的特點:有n!項,每項的符號由角標排列的逆序數(shù)決定,是一個數(shù)。
通過對行列式進行研究,得到了行列式具有的一些性質(zhì)(如交換某兩行其值反號、有兩行對應(yīng)成比例其值為零、可按行展開等等),這些性質(zhì)都有助于我們更方便的計算行列式。
用系數(shù)行列式可以判斷n個方程的n元線性方程組的解的情況,這就是克萊姆法則。
總而言之,可把行列式看作是為了研究方程數(shù)目與未知量數(shù)目相等的特殊情形時引出的一部分內(nèi)容。
線性代數(shù)知識點框架(二)
在利用高斯消元法求解線性方程組的過程中,涉及到一種重要的運算,即把某一行的倍數(shù)加到另一行上,也就是說,為了研究從線性方程組的系數(shù)和常數(shù)項判斷它有沒有解,有多少解的問題,需要定義這樣的運算,這提示我們可以把問題轉(zhuǎn)為直接研究這種對n元有序數(shù)組的數(shù)量乘法和加法運算。
數(shù)域上的n元有序數(shù)組稱為n維向量。設(shè)向量a=(a1,a2,...,an),稱ai是a的第i個分量。
n元有序數(shù)組寫成一行,稱為行向量,同時它也可以寫為一列,稱為列向量。要注意的是,行向量和列向量沒有本質(zhì)區(qū)別,只是元素的寫法不同。
矩陣與向量通過行向量組和列向量組相聯(lián)系。
對給定的向量組,可以定義它的一個線性組合。線性表出定義的是一個向量和另外一組向量之間的相互關(guān)系。
利用矩陣的列向量組,我們可以把一個線性方程組有沒有解的問題轉(zhuǎn)化為一個向量能否由另外一組向量線性表出的問題。同時要注意這個結(jié)論的雙向作用。
從簡單例子(如幾何空間中的三個向量)可以看到,如果一個向量a1能由另外兩個向量a2、a3線性表出,則這三個向量共面,反之則不共面。為了研究向量個數(shù)更多時的類似情況,我們把上述兩種對向量組的描述進行推廣,便可得到線性相關(guān)和線性無關(guān)的定義。
通過一些簡單例子體會線性相關(guān)和線性無關(guān)(零向量一定線性無關(guān)、單個非零向量線性無關(guān)、單位向量組線性無關(guān)等等)。
從多個角度(線性組合角度、線性表出角度、齊次線性方程組角度)體會線性相關(guān)和線性無關(guān)的本質(zhì)。
部分組線性相關(guān),整個向量組線性相關(guān)。向量組線性無關(guān),延伸組線性無關(guān)。
回到線性方程組的解的問題,即一個向量b在什么情況下能由另一個向量組a1,a2,...,an線性表出?如果這個向量組本身是線性無關(guān)的,可通過分析立即得到答案:b,a1,a2,...,an線性相關(guān)。如果這個向量組本身是線性相關(guān)的,則需進一步探討。
任意一個向量組,都可以通過依次減少這個向量組中向量的個數(shù)找到它的一個部分組,這個部分組的特點是:本身線性無關(guān),從向量組的其余向量中任取一個進去,得到的新的向量組都線性相關(guān),我們把這種部分組稱作一個向量組的極大線性無關(guān)組。
如果一個向量組A中的每個向量都能被另一個向量組B線性表出,則稱A能被B線性表出。如果A和B能互相線性表出,稱A和B等價。